Dimensionality Reduction via Multiple Locality-Constrained Graph Optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification Constrained Dimensionality Reduction

Dimensionality reduction is a topic of recent interest. In this paper, we present the classification constrained dimensionality reduction (CCDR) algorithm to account for label information. The algorithm can account for multiple classes as well as the semi-supervised setting. We present an out-of-sample expressions for both labeled and unlabeled data. For unlabeled data, we introduce a method of...

متن کامل

Graph optimization for dimensionality reduction with sparsity constraints

Graph-based dimensionality reduction (DR) methods play an increasingly important role in many machine learning and pattern recognition applications. In this paper, we propose a novel graph-based learning scheme to conduct Graph Optimization for Dimensionality Reduction with Sparsity Constraints (GODRSC). Different from most of graph-based DR methods where graphs are generally constructed in adv...

متن کامل

Dimensionality reduction via discretization

The existence of numeric data and large amounts of records in a database pose a challenging task to explicit concepts extraction from the raw data. This paper introduces a method that reduces data vertically and horizontally, keeps the discriminating power of the original data, and paves the way for extracting concepts. The method is based on discretization (vertical reduction) and feature sele...

متن کامل

Dimensionality Reduction on Grassmannian via Riemannian Optimization: A Generalized Perspective

This paper proposes a generalized framework with joint normalization which learns lower-dimensional subspaces with maximum discriminative power by making use of the Riemannian geometry. In particular, we model the similarity/dissimilarity between subspaces using various metrics defined on Grassmannian and formulate dimensionality reduction as a non-linear constraint optimization problem conside...

متن کامل

Dimensionality Reduction for Stationary Time Series via Stochastic Nonconvex Optimization

Stochastic optimization naturally arises in machine learning. E cient algorithms with provable guarantees, however, are still largely missing, when the objective function is nonconvex and the data points are dependent. This paper studies this fundamental challenge through a streaming PCA problem for stationary time series data. Specifically, our goal is to estimate the principle component of ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2018

ISSN: 2169-3536

DOI: 10.1109/access.2018.2871884